oliveTM IMU

OLVX IMUOX-9D Series, Inertial Measurement Unit For high-performance robotics applications

Document OLVX™ IMU02-9D Revision 2022.A, April 2022

Neufeldstrasse 50 82140 Olching, Germany Ust.-IdNr. DE358511336 Commercial Register. HRB-281200 **Olive Robotics GmbH**

Tell: (+49) 1515-666-5426 contact@olive-robotics.com www.olive-robotics.com

Brief Description

The Olive[™] IMU OLVX IMU0X-9D Series stands at the forefront of inertial measurement technology, specifically engineered for high-performance robotics. Featuring native ROS 2 support through DDS protocol, it delivers seamless integration and real-time data synchronization. This IMU combines redundant sensor fusion with high frame rates and advanced filtering techniques, offering unmatched precision and reliability for dynamic robotic applications across various industries.

Key Features

•Native ROS 2 Support: Out-of-the-box compatibility with ROS 2 and DDS (Data Distribution Service) ensures easy integration and robust data handling within robotics ecosystems.

•Industry-Proven Inertial Sensors: Equipped with high-precision accelerometers, gyroscopes, and a magnetometer to deliver accurate motion and orientation data.

•**Redundant Sensor Fusion**: Features dual 3-DoF accelerometers and gyroscopes, plus a single magnetometer for enhanced data integrity and error minimization.

•Ethernet over USB Interface: Offers a reliable and high-speed connection, simplifying the setup and data transmission processes.

•Low-Latency Sensor Synchronization: Achieves synchronization speeds of less than 0.2 milliseconds, critical for real-time applications requiring fast and precise sensor data integration.

•High Frame Rate: Supports up to 2000 Hz of filtered data output, facilitating smooth and detailed motion tracking.

•Advanced EKF Filter and AI Fusion: Employs Extended Kalman Filtering and artificial intelligence techniques to optimize data accuracy and provide superior motion analysis capabilities.

•Embedded Real-time Linux Kernel: Runs on Olix OS, a customizable and programmable real-time Linux kernel developed by Olive Robotics, designed to enhance operational efficiency and adaptability in dynamic setups.

powered by

Applications

The Olive[™] IMU OLVX IMU0X-9D Series is versatile and can be effectively utilized across a wide range of robotics applications:

•Autonomous Vehicles: Enhances navigation and stability in self-driving cars, drones, and unmanned aerial vehicles (UAVs) by providing critical real-time data for obstacle avoidance, path planning, and vehicle control.

•Industrial Automation: Improves precision and efficiency in robotics systems used in manufacturing, assembly, and material handling, ensuring seamless and accurate automation processes.

•Marine Robotics: Supports underwater vehicles and systems with robust inertial data necessary for depth control, orientation, and navigation in challenging aquatic environments.

•Wearable Robotics: Integral to the development of exoskeletons and other wearable technologies, providing the necessary motion tracking to augment human movement accurately.

•Mobile Robotics: Ideal for robots operating in dynamic environments such as warehouses and logistic centers, offering essential data to execute complex tasks like load balancing and terrain adaptation.

•**Research and Development**: Serves as a critical tool in academic and commercial R&D projects, facilitating the exploration and development of innovative robotics applications and technologies.

Each of these applications benefits significantly from the Olive[™] IMU's advanced sensor fusion technology, high frame rates, and low-latency synchronization, making it a key component in advancing the capabilities and performance of robotic systems.

Sensor Specifications

The Olive[™] IMU OLVX IMU0X-9D Series is equipped with high-performance sensors designed to provide precise and reliable data across various robotics applications. Below are the general specifications of the module:

System Performance

AHRS Accuracy	Specification
Roll, Pitch (static)	0.2°
Roll, Pitch (dynamic)	0.5°
Heading (static, AHRS only)	0.5°
Heading (dynamic, AHRS only)	2.6°

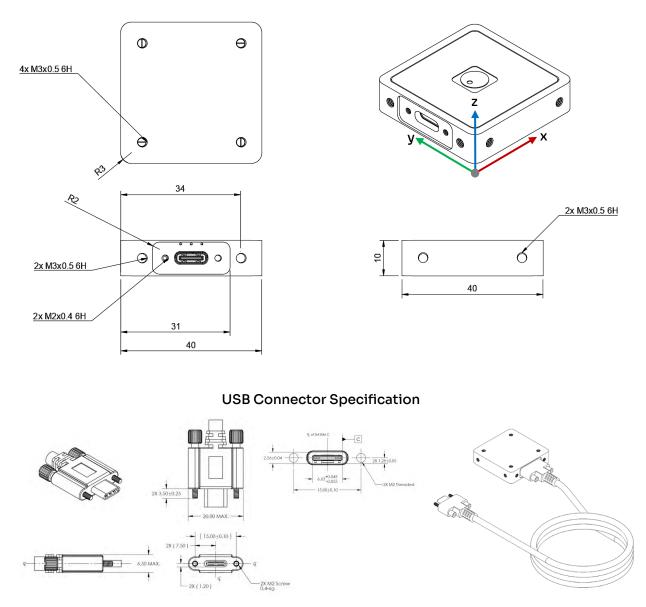
IMU Sensor Details

Specification	Accelerometer	Gyroscope	Magnetometer
Range	± 4g, 8g, 16g	± 250 °/s, 500 °/s, 1000 °/s	± 1300 μT
Resolution	16-bit or 0.06 mg/LSB	16-bit or 0.004 dps/LSB	16-bit
Sensitivity	2048 LSB/g @ ±16 g	262.1 LSB/dps @ ±125 deg/sec	± 0.3 μT
Zero-rate Offset	±20 mg	±0.5 dps	-
Output Noise Density	160 μg/√Hz	0.008 dps/√Hz	-

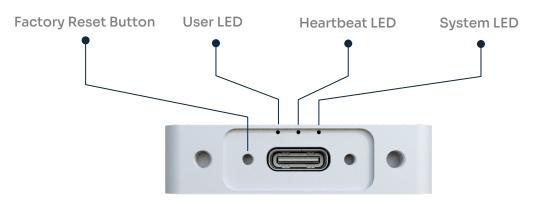
Interface

Connector	USB Type-C
Communications Interface	Ethernet Over USB
Output Data Rate (IMU and Fused)	1-2000 Hz
Protocols (DDS)	rmw_fastrtps_cpp, rmw_cyclonedds_cpp, rmw_connext_cpp, rmw_zenoh

ROS 2 Topics and Services


Topic/Service Name	Туре	Role	Description
/filtered_ahrs	sensor_msgs/Imu	Publisher	Acc, Gyro, Quaternion
/filtered_imu	sensor_msgs/Imu	Publisher	Acc, Gyro, Quaternion
/linear_accel	geometry_msgs/msg/AccelStamped	Publisher	Gravity Compensated Accel
/magnetometer	sensor_msgs/MagneticField	Publisher	Magnetic Field
/setBias	std_srvs/srv/Trigger	Service	Calibrating Sensor's Offset
/setZeroQuaternion	std_srvs/srv/Trigger	Service	Resetting Sensor's Axis

Physical and Electrical


Weight	32g
Size	40.0 mm x 40.0 mm x 10.0 mm
Power Consumption	0.9 W (Typical), 1.8 W (Max)
Operating Voltage	4.6 to 5.5 VDC (USB PD 2.0 Standard)
Operating Temperature	0°C to 85°C
Interface LEDs	3x (Heartbeat, User, System)

Physical Dimensions

Interface

