

olixSense™ X1 Ultra

IMU / AHRS Sensor

Embedded AI Fusion | Penta Redundant | Gigabit POE+ Ethernet | ROS2 Native

olixAI™
Embedded AI Sensor Fusion

Gigabit POE
Ethernet

Penta
3-Axis
Gyroscope

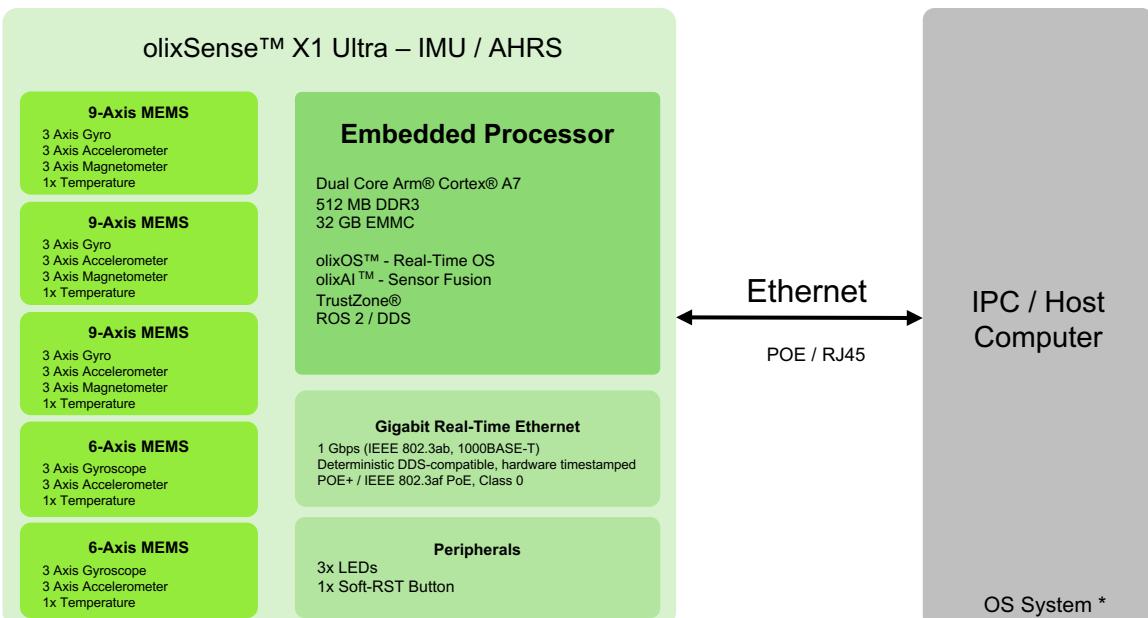
Penta
3-Axis
Accelerometer

Technical Document No. 1765556141 | SKU# OLVX-X1-PIMU-ETH-POE | Revision V0.4 - Dec 2025

Olive Robotics GmbH

Daimlerstrasse 7, 85521 Ottobrunn, Germany

1. Product Overview


The olixSense™ IMU X1 Ultra is a high-performance inertial measurement unit designed for advanced mobile robotics, industrial automation, and autonomous systems. Built with a dual-core embedded processor, real-time Linux kernel (olixOS™), and native ROS 2 integration, it delivers AI-enhanced sensor fusion, robust timing, and low-latency inertial data ideal for high-frequency control and SLAM pipelines.

2. Key Features

- 39-DoF Inertial Sensing: Penta 3-axis gyroscopes, accelerometers, and triple magnetometer
- Real-Time Embedded AI Fusion: Deep fusion with redundancy and failover
- ROS 2 Native: Direct DDS communication, plug-and-play for robotic middleware
- High-Frequency Output (ODR) : Up to 1000 Hz raw & fused
- Low-Latency Gigabit Ethernet: Deterministic, real-time data transport
- Onboard Processing: Dual-core Cortex-A7 + 512MB DDR3 RAM
- Industrial-Grade: Vibration and temperature calibrated, 42g, 38x38x18 mm

3. System Architecture

IP Address: 192.168.7.100

IP Address: 192.168.7.XXX

* This device does not require any additional driver installation.

4. Applications

- Mobile Robots (AMR, AGV, UAV)
- Industrial Arms & Hands
- Research and SLAM Systems
- Sensor Fusion Systems
- Predictive Maintenance and Vibration Analysis

5. Sensor Specifications

- Sensor Fusion Performance

Parameter / Metric	Value
Roll, Pitch (Stationary, AHRS Mode, ODR 100 Hz)	< 0.1° RMSE
Roll, Pitch (Dynamic, AHRS Mode, ODR 100 Hz)	< 0.5° RMSE
Roll, Pitch (Stationary, IMU Mode, ODR 1 KHz)	< 0.25° RMSE
Roll, Pitch (Dynamic, IMU Mode, ODR 1 KHz)	< 0.5° RMSE
Yaw (Stationary, AHRS Mode, ODR 100 Hz) *	< 0.1° /hr
Yaw (Dynamic, AHRS Mode, ODR 100 Hz) *	< 0.003° /s
Yaw (Stationary, IMU Mode, ODR 1 KHz) *	< 0.3° /hr
Yaw (Dynamic, IMU Mode, ODR 1 KHz) *	< 0.005° /s

- Physical and Electrical

Weight	42g
Size	38.0 mm x 38.0 mm x 18.0 mm
Power Consumption	1.2 W (Typical), 1.8 W (Max)
Operating Voltage	6.0 to 56.0 VDC (POE+ Standard)
Operating Temperature	-10°C to 55°C
Interface LEDs	3x (Heartbeat, User, System)

- System Performance

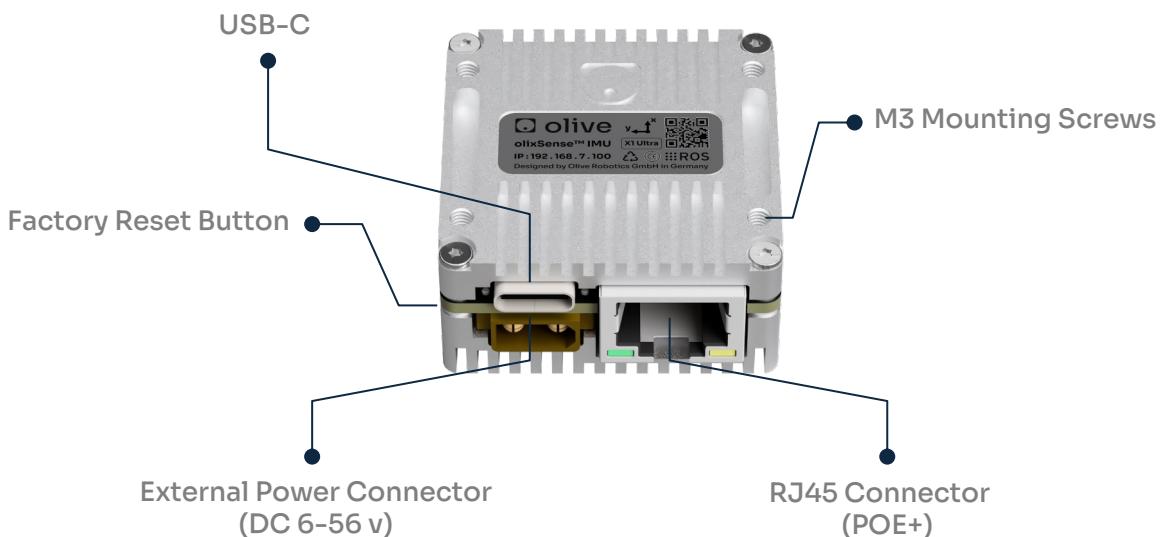
Metric	Value
Attitude Accuracy (AHRS)	< 2° RMSE (yaw), < 0.5° RMSE (roll / pitch)
Latency (m2d) / (motion to dds message)	< 1 ms (AI fused output)
Time Sync Error (DDS)	< 200 µs (DDS – ROS 2)
Allan Variance	VRW 0.06 m/s/√hr, ARW 0.43 °/√hr
AGV Rotation Test	Yaw RMSE: 1.0°, Std Dev: 0.5°
OptiTrack Ref	Used 8x PrimeX 22 for GT validation
Ingress Rating	IP51
Vibration Resistance	5g RMS, 20-2000 Hz

* The heading accuracy depends on sensor configuration and calibration. A fully calibrated sensor and ideal tilt compensation are assumed.

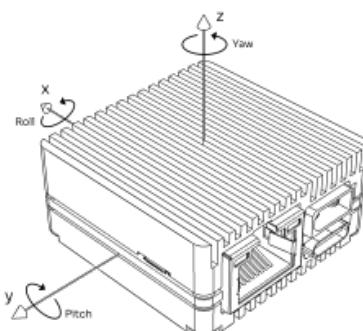
- MEMS Sensor Performance

Specification	Accelerometer	Gyroscope	Magnetometer
Range	± 4g, 8g, 16g	± 250 °/s, 500 °/s, 2000 °/s	± 1300 µT
Resolution	16-bit or 0.06 mg/LSB	16-bit or 0.004 dps/LSB	16-bit
Sensitivity	2048 LSB/g @ ±16 g	262.1 LSB/dps @ ±125 deg/sec	± 0.3 µT
Sensitivity Tolerance	±4 % @ Ta=25°C, gFS2g	±3 % @ Ta=25°C, RFS2000	±0.03% @ After API compensation -40°C ≤ TA ≤ +85°C Nominal VDD supplies
Zero-rate Offset	±20 mg	±0.5 dps	-
Output Noise Density	160 µg/√Hz	0.008 dps/√Hz	-
Zero-g Offset (x,y,z)	±150 mg @ gFS2g, TA=25°C, nominal VDD supplies, over life-time	+3 dps @ Nominal VDD supplies T A =25°C, Slow and fast offset cancellation off	-
Nonlinearity	0.5 %FS @ TA=25°C, nominal VDD, best fit straight line gFS2g	0.01 %FS @ TA=25°C, nominal VDD, best fit straight line RFS250, RFS2000	1.2 %FS @ best fit straight line

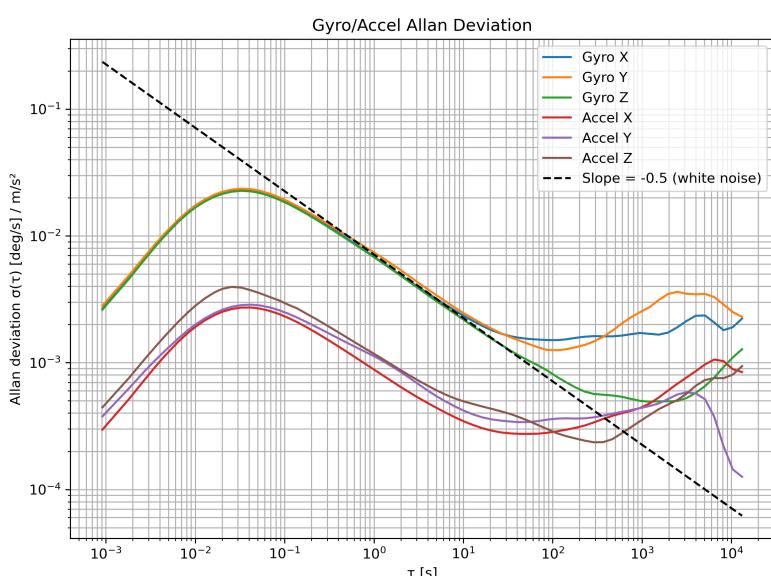
- Communication Interface / ODR

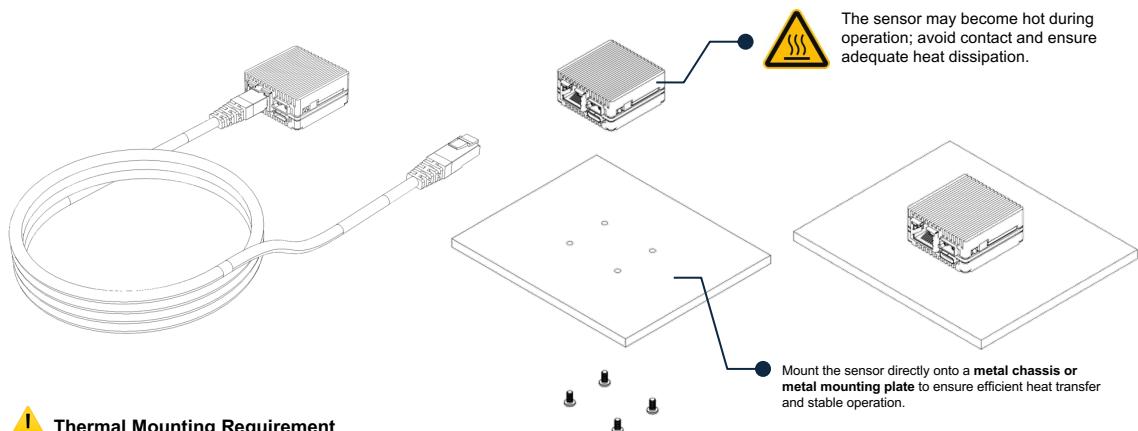

Interface Connector	Ethernet RJ45 / LAN
Communications Protocol	1 Gbps (IEEE 802.3ab, 1000BASE-T)
Output Data Rate (Raw and Fused Data)	1-1000 Hz
Middleware / Protocols (DDS)	<ul style="list-style-type: none"> - rmw_fastrtps_cpp - rmw_cyclonedds_cpp - rmw_connect_cpp - rmw_zeno
ROS 2 Distribution	<ul style="list-style-type: none"> - Humble - Jazzy

- ROS 2 Native Messages

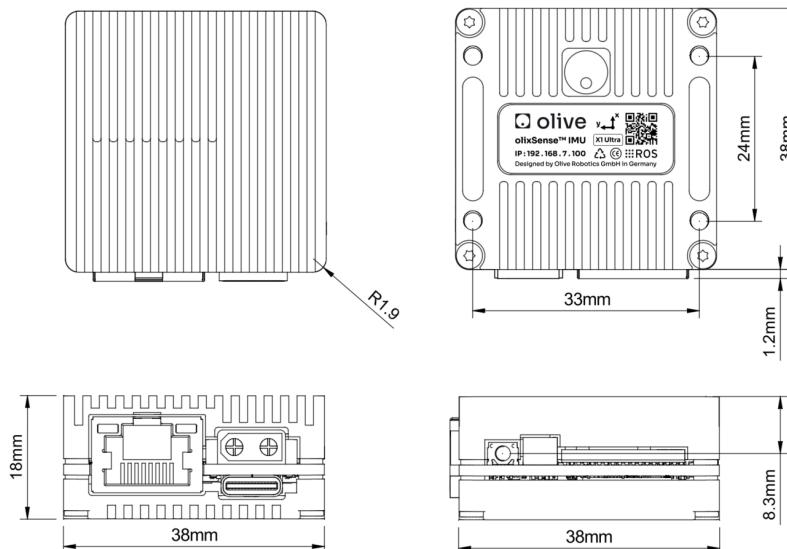

Topic/Service Name	Type	Description
/imu	sensor_msgs/Imu	Acc, Gyro, Quaternion
/acceleration	geometry_msgs/msg/AccelStamped	Gravity Compensated Accel
/magneticfield	sensor_msgs/MagneticField	Magnetic Field
/velocity	geometry_msgs/msg/TwistStamped	Relative Velocity
/temperature	sensor_msgs/msg/Temperature	Sensor Temperature
/status	diagnostic_msgs/msg/DiagnosticStatus	Sensor Status

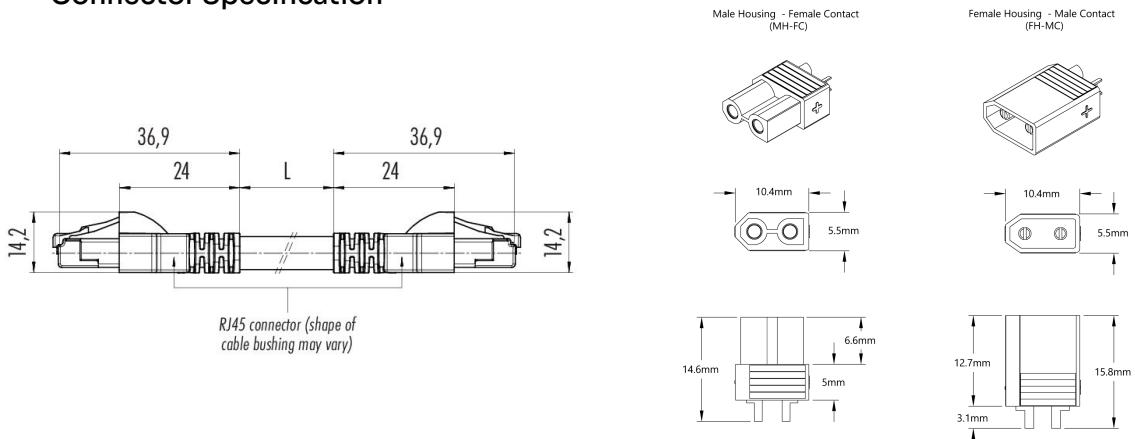
* The heading accuracy depends on sensor configuration and calibration. A fully calibrated sensor and ideal tilt compensation are assumed.


- **Sensor Interface / Peripherals**


- **Coordinate Frame / Axis**

- **Performance Test / Allan Deviation Plot**


- Mechanical Installation Overview


⚠ Thermal Mounting Requirement

For proper operation and long-term reliability, the sensor **must be mounted on a metal surface** of the system or robot to allow effective heat dissipation. Operating the sensor **without adequate thermal coupling**, or in **warm or poorly ventilated environments**, can lead to elevated internal temperatures. Prolonged exposure to excessive heat **may degrade performance and cause permanent damage** to the sensor over time.

- Physical Dimensions

- Connector Specification

Olive Robotics GmbH

Daimlerstrasse 7, 85521 Ottobrunn, Germany

www.olive-robotics.com

contact@olive-robotics.com

Technical Document No. 1765556141 | SKU# OLVX-X1-PIMU-ETH-POE | Revision V0.4 - Dec 2025

Disclaimer - This document and the information contained herein are provided by Olive Robotics GmbH ("Olive Robotics") for informational purposes only. While every effort has been made to ensure the accuracy and reliability of the content at the time of publication, all information is provided "as is", without warranties of any kind, either express or implied, including but not limited to warranties of merchantability, fitness for a particular purpose, non-infringement, or accuracy. No representation is made, and no liability is assumed, for the completeness, accuracy, or reliability of the information, specifications, figures, or performance characteristics described herein. Users are solely responsible for evaluating the suitability of the information and the products described for their intended use. Olive Robotics reserves the right to modify, correct, enhance, or otherwise amend its products, specifications, documentation, and this publication at any time and without prior notice. This document supersedes all prior documentation relating to the subject matter contained herein. Use of any Olive Robotics product must comply with all applicable laws, standards, and regulations, and is subject to the terms and conditions of sale and/or licensing in effect at the time of purchase or use. For the latest version of this document or for additional product support, please visit www.olive-robotics.com or contact an authorized representative of Olive Robotics GmbH.